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The travelling waves that are initiated in an autocatalytic reaction–diffusion system with
quadratic rate law are considered. The system is modelled on the basis of a continuous-
flow, unstirred reactor. The model is used to determine whether any of the complex struc-
tures reported for cubic autocatalytic reaction–diffusion systems can also be observed in the
quadratic model. This is found not to be the case. The range of behaviour of the quadratic
model is much less complex, with only front waves being initiated under the necessary
conditions, which are established. There are, however, some unusual transient features to
be found after the initial passage of the wave front.

1. Introduction

A way of studying the spatio-temporal behaviour of reaction–diffusion systems
is through the continuous-flow, unstirred reactor (CFUR). In this reactor a continuous
supply of fresh reactants is achieved in a way that does not interfere with the transport
processes by molecular diffusion. A reaction zone is created, usually involving a gelled
medium, which is contained between impermeable walls at its ends. This reaction
region is also in contact with a reservoir from which fresh reactants can be drawn, by
diffusion through permeable membranes for example, and into which reaction products
can be removed from the reaction zone. The chemical composition of the reservoir
is kept constant by continuous flow, thus enabling steady states and other indefinitely
sustainable structures to be observed.

Here we consider a simple model for the CFUR in which we assume that spatial
variations occur only in a direction ‘along’ the reactor, i.e., can be represented by
the single spatial variable x. We also assume that the exchange processes between
the reaction zone and the reservoir can be modelled by linear diffusive interchange
terms. We consider the case of a simple prototype reaction within the CFUR which is
isothermal and given purely by the quadratic autocatalytic kinetics

A+B → 2B, rate kab (1)

(where a and b are the concentrations of reactant A and autocatalyst B, respectively,
and k is the rate constant).
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Furthermore, we are concerned here with the possible reaction–diffusion travel-
ling waves that can be initiated in the reactor and to this end we assume that reactant
A has an initially uniform concentration a0, the same concentration of A within the
reservoir. We also assume that autocatalyst B is introduced into the reaction zone
locally at the end x = 0 and, for simplicity, we assume that there is no autocatalyst
supplied to the reaction zone from the reservoir.

Finally, we take the reaction zone to be sufficiently long for any travelling waves
to be fully formed well before the influence of the end at x = l is felt, i.e., in effect
assuming the reaction zone to be ‘semi-infinite’ in extent. A schematic representation
of our CFUR model is shown in figure 1.

These considerations lead to the equations and initial and boundary conditions

∂a

∂t
= DA

∂2a

∂x2 +MA(a0 − a)− kab, (2)

∂b

∂t
= DB

∂2b

∂x2 −MBb+ kab, (3)

where DA, DB and MA, MB are the diffusion coefficients and mass transfer coeffi-
cients of reactant A and autocatalyst B respectively. Initially we have

a(x, 0) = a0,
(4)

b(x, 0) = b0g(x),

where g(x) represents some local input of B, i.e., g(x) is zero outside some finite
subinterval [0,σ] of [0, +∞] and b0 is a positive constant. The boundary conditions
are

a→ a0, b→ 0, as x→∞, t > 0, (5)

and zero flux on x = 0.

Figure 1. Schematic representation of the CFUR modelled by equations (2) and (3).
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A model very similar to that given by equations (2)–(5), with the only difference
being that the prototype kinetics are given by cubic autocatalysis, has already received
considerable attention. Pearson and co-workers [4,11,14] have shown that complex
spatio-temporal structures can arise in their model, with the formation, extinction
and self-replication of spots (or patterns) being observed. Their work is concerned
primarily with finite domains (in both one and two dimensions) and required unequal
diffusivities for the two chemical species. Petrov et al. [12] have also considered
the cubic autocatalysis case, again on a finite (one-dimensional) domain and with
unequal diffusion coefficients for species A and B. They showed that the model
could exhibit wave reflection from (zero flux) boundaries as well as wave splitting
for suitable choices of the parameters. The cubic autocatalysis model has also been
treated by Merkin et al. [8,9] and Merkin and Sadiq [10]. This work was concerned
essentially with a semi-infinite domain (as is the case in the present model) and with
equal diffusion coefficients. They considered the possible travelling waves that could
be initiated and showed that both front waves and pulse waves could form. However,
the most unusual feature of their study was in showing that, for suitable parameter
values, the initial passage of a front wave could leave behind a region where there was
spatio-temporal chaos, with this then being sustained indefinitely. The appearance of
these complex spatio-temporal structures have also been confirmed in a recent paper
by Rasmussen et al. [13]. More recently, Jones and O’Brien [3] have investigated this
model numerically in two dimensions, paying particular attention to the development
of the instabilities that can occur in both plane and axisymmetric waves.

Here we are concerned with the case of quadratic autocatalysis to see if any of
the complex structures reported for cubic autocatalysis can also be observed in our
model. We find that this is not the case. The range of behaviour in our model is
much less complex, with only front waves being initiated, though these can generate
some, perhaps unexpected, transient features after their initial passage, with pulse-like
behaviour in B and ramp-like behaviour in A being seen.

We simplify equations (2) and (3) by making them dimensionless through the
introduction of the substitutions below, following [8–10]:

a = a0a, b = a0b, t = MAt, x =

√
MA

DA
x,

to give (on dropping the bars for convenience)

∂a

∂t
=
∂2a

∂x2 + 1− a− µab, (6)

∂b

∂t
= δ

∂2b

∂x2 − φb+ µab (7)

on 0 < x < ∞, t > 0, where µ = ka0/MA, δ = DB/DA, φ = MB/MA. Note also
that µ is the only parameter that depends on the reservoir concentration, a0, of reactant
A and hence changes in µ can be directly related to changes in this concentration.
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The initial and boundary conditions become

a = 1, 0 < x <∞, t = 0, (8)

and

b =

{
β0g(x), 0 6 x < σ,
0, otherwise,

t = 0, (9)

where σ defines the local input region and max06x<σ
{
g(x)

}
= 1 with g(x) being

smooth and non-negative and β0 = b0/a0.
We are considering waves propagating only in the positive x-direction and apply

no-flux boundary conditions at x = 0, namely,

∂a

∂x
= 0,

∂b

∂x
= 0 at x = 0. (10)

with

a→ 1, b→ 0 as x→∞, t > 0. (11)

The above model assumes different mean transfer coefficients for the chemical species
A and B. This assumption can be removed and equal mass transfer coefficients allowed
for if we also introduce the linear termination step

B → inert, rate ktb,

into our kinetic mechanism. With this extra step (and MA = MB) we now have that

φ =
MA + kt
MA

.

The type of chemical reactions which are modelled by the reaction scheme (1) generally
involve species A and B which have a similar molecular size. In such cases little
variation in their diffusion rates is found and it is reasonable to consider the species
A and B as having equal diffusion coefficients; thus we can assume DA = DB , i.e.,
δ = 1. This is the case we shall concentrate on in the following discussion. We start
by giving a brief summary of the kinetics of equations (6) and (7).

2. Kinetics

The dynamical behaviour of the kinetics of equations (6) and (7) is described by
the ordinary differential equations

da
dt

= 1− a− µab, (12)

db
dt

= µab− φb. (13)
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The stationary states of the kinetic equations (12) and (13) are easily shown to be

as = 1, bs = 0 (14)

and

as =
φ

µ
, bs =

µ− φ
µφ

. (15)

We note that stationary state (15) requires µ > φ for a physically acceptable solution
(bs > 0).

The linear stability of these stationary states is readily determined. We find that
(14) is stable (node) for µ < φ and unstable (saddle point) for µ > φ. Stationary state
(15) is unstable (saddle point) for µ < φ and stable for µ > φ, being a node for all µ
if φ 6 1 and, for φ > 1, a node for φ < µ < µ−, a focus for µ− < µ < µ+ and a
node for µ > µ+, where

µ± = 2
(
φ2 ± φ3/2

√
φ− 1

)
.

The bifurcation diagram in figure 2 illustrates the ranges of stability and instability.

3. A priori bounds

Before considering the possible permanent form travelling waves that can be
initiated in the open quadratic autocatalytic system, we establish a priori bounds for
the solutions of the initial-value problem (6)–(11).

Figure 2. Bifurcation diagram (a plot of bs against µ) to show the regions of stability and instability of
the stationary states (as, bs), where —— represents a stable and - - - - represents an unstable stationary

state.
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3.1. A priori bounds for a

It is readily established, Smoller [16], Britton [2], and taking due regard of the
behaviour as x→∞ along the lines described by Merkin et al. [7] that

a > 0, b > 0 on 0 6 x <∞, t > 0. (16)

We next consider the linear operator

N
[
u
]

= ut − uxx − 1 + u on 0 6 x <∞, t > 0, (17)

with

ux(0, t) = 0.

Then for u = 1, u = a

N
[
u
]

= 0, N
[
u
]

= −µab 6 0 on 0 6 x <∞, t > 0, (18)

from (17). Also, u(x, 0) 6 1 6 u(x, 0), ux(0, t) 6 ux(0, t). Hence u = a, u = 1 are
a regular subsolution and supersolution of operator (17) respectively, so that by the
scalar comparison theorem for linear parabolic operators,

0 6 a(x, t) 6 1 on 0 6 x <∞, t > 0. (19)

3.2. A priori bounds for b

Next we consider the operator

N
[
u
]

= ut − δuxx − (µ− φ)u on 0 6 x <∞, t > 0, (20)

with

ux(0, t) = 0.

For u = b, u = b0e(µ−φ)t

N
[
u
]

= µb(a− 1) 6 0, N
[
u
]

= 0 on 0 6 x <∞, t > 0,

from (19). Also, u(x, 0) = b0g(x) 6 b0 = u(x, 0) and ux(0, t) 6 ux(0, t). Hence u and
u are a regular subsolution and supersolution respectively of operator (20). Hence

0 6 b(x, t) 6 b0e(µ−φ)t for 0 6 x <∞, t > 0. (21)

Hence the solution is bounded uniformly for all finite t, which, from Smoller [16]
(theorem 14.4) guarantees uniqueness and global existance. Expression (21) also leads
to the following.
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3.3. Necessary conditions for the existence of travelling waves

For the case µ < φ, condition (21) shows that b(x, t) → 0 as t → ∞ uniformly
in x. Also, with b ≡ 0, equation (6) gives that a → 1 as t → ∞. Also, with φ = µ,
equation (7) gives

∂b

∂t
− δ ∂

2b

∂x2 = µ(a− 1)b 6 0.

Then, using the maximum principle for the diffusion equation, it follows that travelling
waves will not be initiated when µ = φ. Hence, we conclude that a necessary condition
for travelling waves to exist is that

µ > φ. (22)

Significant insights into the nature of the solution to the initial-value problem (6)–(11)
can be gained from a consideration of the travelling waves of permanent form that
are sustainable by these equations, as these can form the large time behaviour of the
system. This is what we discuss next.

4. Permanent form travelling waves

We now establish properties of the permanent form travelling waves in the open
quadratic autocatalytic system. We put a = a(y), b = b(y), where y is the travelling
co-ordinate given by y = x − νt with ν being the constant wave speed. For these
travelling waves to emerge as the long time solutions to our initial-value problem we
require ν > 0. Equations (6) and (7) then give

d2a

dy2 + ν
da
dy

+ 1− a− µab = 0, (23)

d2b

dy2 + ν
db
dy

+ µab− φb = 0 (24)

on −∞ < y <∞, with boundary conditions

a→ 1, b→ 0 as y →∞. (25)

We require a non-negative (from (19) and (21)), non-trivial solution to equations (23)
and (24). In addition, we require conditions to be uniform at the rear of the wave.
This leads to, from (14) and (15) that

a→ φ

µ
, b→ µ− φ

µφ
as y → −∞, (26)

which indicates that a front wave is generated, or that

a→ 1, b→ 0 as y → −∞, (27)
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which indicates a pulse wave.
From (22) we need only consider the case when µ > φ. We start by considering

the special case when φ = 1.

4.1. Solution for φ = 1

With φ = 1 (and µ > 1) we can add equations (23) and (24) to get a linear
equation for a + b. The only solution to this equation which remains bounded as
|y| → ∞ and satisfies boundary condition (25) is a+ b ≡ 1. This leads to the single
equation

d2b

dy2 + ν
db
dy

+ µ(1− b)b− b = 0. (28)

Multiplying equation (28) by db/dy and applying
∫∞
−∞ . . . dy leads to

ν

∫ ∞
−∞

(
db
dy

)2

dy =

∫ b∞

b−∞

(
b− µb+ µb2) db. (29)

The LHS of equation (29) must be strictly positive (for a nontrivial solution) hence
we must have b∞ 6= b−∞. From which it follows that we cannot have pulse waves
and only front waves can exist for µ > 1 when φ = 1.

For µ > 1, we can express equation (28) in the standard Fisher–Kolmogorov
form [2,15] by writing

b =

(
µ− 1
µ

)
b, y = (µ− 1)1/2y, ν = (µ− 1)1/2ν, (30)

from which we obtain a minimum wave speed νmin = 2 and hence

νmin = 2
√
µ− 1. (31)

This leads us to consider the wave speed for general values of the parameters.

4.2. Wave speed

Previous studies of travelling waves in quadratic autocatalytic systems, [5,6] for
example, show that the propagation speed is determined from the behaviour of the
solution at the front of the wave where a ≈ 1, and b is small. The same considerations
apply here. Linearizing equation (24) for b small leads to an equation for b which has
solution of the form e−λy , where

λ2 − νλ+ (µ− φ) = 0. (32)

We require λ to be real (and positive); complex values for λ give rise to focal behaviour
as y → ∞, which, in turn, leads to ranges of y over which b would take negative
values. Thus we must have

ν > νmin = 2
√
µ− φ. (33)
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Further, we can give an argument which follows very closely that given by Billingham
and Needham [1] to show that the waves which will emerge as the long time solution
to our initial-value problem will travel with the minimum speed, i.e., the propagation
speed c(t) of the waves formed from the initial-value problem (6)–(11) is such that
c(t) → νmin as t → ∞. This will also be confirmed from the numerical integrations
of the initial-value problem discussed below.

4.3. Solution for φ large

To obtain a solution to equations (23) and (24) valid for φ large, we first put
µ = µ0φ, where µ0 is O(1) as suggested by condition (22). We start by considering
the region at the front of the wave, where we put Y =

√
φy, V =

√
φν and leave a

and b unscaled. Equations (23) and (24) become

d2a

dY 2 + V
da
dY

+
1
φ

(1− a)− µ0ab = 0, (34)

d2b

dY 2 + V
db
dY

+ µ0ab− b = 0. (35)

Equations (34) and (35) suggest looking for a solution by expanding

a = a0 + φ−1a1 + φ−2a2 + · · · , (36a)

b = b0 + φ−1b1 + φ−2b2 + · · · , (36b)

V = V0 + φ−1V1 + φ−2V2 + · · · . (36c)

The leading order problem is

a′′0 + V0a
′
0 − µ0a0b0 = 0, (37)

b′′0 + V0b
′
0 + µ0a0b0 − b0 = 0 (38)

with

a0 → 1, b0 → 0 as Y →∞
(where primes denote differentiation with respect to Y ).

Now with V0 = V 0
√
µ0, Y = Y

√
µ0, equations (37) and (38) become

a′′0 + V 0a
′
0 − a0b0 = 0, (39)

b′′0 + V 0b
′
0 + a0b0 −

b0

µ0
= 0. (40)

This system is discussed in detail in [6], where it is shown that these equations have
a solution only if µ0 > 1 and have

b0 → 0, a0 → as(µ0) as Y → −∞,
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where µ0as < 1, i.e., as < 1, and with as being determined numerically from the
solution of equations (39) and (40).

We now consider the problem at O(φ−1), namely,

a′′1 + V0a
′
1 + V1a

′
0 − µ0(a0b1 + a1b0) + 1− a0 = 0, (41)

b′′1 + V0b
′
1 + V1b

′
0 + µ0(a0b1 + a1b0)− b1 = 0 (42)

with

a1 → 0, b1 → 0 as Y →∞.
The solution to this linear problem is not important for our discussion, only the be-
haviour as Y → −∞ is required. We find that

a1 ≈ −
(1− as)
V0

Y + · · · , b1 → 0 as Y → −∞. (43)

A consideration of the problem at O(φ−2) shows that

a2 ≈ −
(1− as)

2V 2
0

Y 2 − V1
(1− as)
V 2

0

Y + · · · , b2 → 0 as Y → −∞. (44)

Hence we have

b→ 0,

a ≈ as −
(1− as)
V0

Y φ−1 − (1− as)
2V 2

0

Y 2φ−2 − V1
(1− as)
V 2

0

Y φ−2 + · · · . (45)

Expression (45) shows that expansion (36) becomes non-uniform when Y is O(φ).
This leads us to consider a further region at the rear of the wave in which b ≡ 0, a is
O(1) and where we put ζ = y/

√
φ. This results in the equation

1
φ

d2a

dζ2 + V
da
dζ

+ 1− a = 0.

A solution in inverse powers of φ is suggested. The leading order term a0(ζ) is given
by

a0(ζ) = 1− (1− as)eζ/V0

on matching with (45), from which it follows that

a0 → 1 as ζ → −∞. (46)

The result in (46) leads us to the conclusion that, for φ large, we should expect to see
pulse waves. However, an examination of the kinetics of the system shows that this
stationary state is unstable. Therefore, we expect that, after a large initial perturbation
generated by the passage of the wave, the concentrations of A and B will slowly
approach the stable stationary state (15), over a region where diffusive effects will
generally be negligible.
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A consideration of equations (12) and (13) for φ large suggests that, when (15)
has a focal character, this approach will have a two-time behaviour. There will be
relatively narrow regions where the concentration of A changes rapidly and that of B
goes through a non-trivial excursion, and much wider regions where the concentration
of A increases slowly with that of B remaining small and close to its stationary state
value, which, in this context, is of O(φ−1). To illustrate this response we plot, in
figure 3a, the trajectories in the (a, b) phase plane, for a solution for φ large (here
µ = 1000, φ = 800) starting close (a, b) = (1, 0). The corresponding time responses
for a and b are shown in figures 3b and 3c. Finally, we note that the analysis developed
above for φ large holds for µ0 large, reducing to the standard Fisher–Kolmogorov
problem ([1,2], for example) as µ0 →∞. Consequently, no further asymptotic scalings
for µ are required and the discussion of this case is complete. We are now in a position
to consider the numerical solutions to the full initial-value problem.

5. Numerical solutions

The numerical solution scheme used to solve the IVP represented by equa-
tions (6)–(11) is based on the Crank–Nicolson method, and used the Newton–Raphson
method to solve the systems of non-linear finite-difference equations that arise at each
time step. Choleski decomposition was used to invert the matrices. This solution
scheme incorporates a time-step check to maintain accuracy and is described fully
in [5]. It has been used successfully on a series of similar initial value problems, for
example, in [6–9].

The computations were performed over a domain large enough to allow permanent
form travelling waves to be generated. At both ends of the domain zero-flux boundary
conditions were applied. For the initial perturbation we took g(x) = 1 for 0 6 x < 1,
with a value of b0 = 0.5. Typically we used 2000 points in the space variable and
a step size ∆x = 0.1. Numerical solutions were obtained for a range of values of
µ and φ and the integrations were performed until a wave of permanent form had
evolved. This was monitored by calculating the wave speed and the computations
were continued until this was seen to be approaching a constant value.

Initially, calculations were performed with µ < φ and in all cases tried no waves
were seen to form, as expected. Here the concentration of B quickly became zero and
that of A then returned to unity slowly through diffusive effects. We next performed
numerical integrations with µ > φ. Here a travelling wave of permanent form was
seen to evolve in all cases. The asymptotic (large time) value of the speed of these
waves closely correlated (to within our numerical accuracy) with νmin as given by (33).

For relatively small values of µ and φ, (figure 4, for µ = 1 and φ = 0.2, 0.5,
0.8) the wave profiles remain monotone throughout and have the standard front wave
appearance seen in many autocatalytic systems.

As µ is increased, (figure 5, µ = 10, φ = 2, 5, 8) the wave profiles are no longer
monotone, now there is an increase in b and a decrease in a before the stable stationary
state (15) is attained at the rear of the wave. This trend becomes more pronounced as
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Figure 3. Solution of the kinetic equations (12) and (13) for µ = 1000 and φ = 800, starting close to the
unstable stationary state (a, b) = (1, 0): (a) phase plane, (b) time response for a, (c) time response for b.
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Figure 4. Wave profiles obtained from numerical integration of the full IVP, for µ = 1.0 and (a) φ = 0.2,
(b) φ = 0.5, (c) φ = 0.8.
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Figure 5. Wave profiles obtained from numerical integration of the full IVP, for µ = 10 and (a) φ = 2,
(b) φ = 5, (c) φ = 8.
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Figure 6. Wave profiles obtained from numerical integration of the full IVP, for µ = 1000 and (a)
φ = 200, (b) φ = 500, (c) φ = 800.
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µ is increased, and by µ = 1000 (figure 6) a long lived transient behaviour is seen at
the rear of the wave. This follows closely the behaviour seen in the solution of the
kinetic equations (12, 13) for µ and φ large. Note that for φ = 500 and more so for
φ = 800, there are very small responses in b (note the different scales for the plots of
a and b in figure 6) and that these small responses produce very much larger variations
in the concentration of A after the passage of the initial wave front.

6. Conclusions

We have considered an open isothermal reaction–diffusion system with quadratic
autocatalytic kinetics. The permanent form travelling waves generated in the system
by some local input of autocatalyst have been examined. From examination of the
kinetics we found that stationary state (14) is a stable node for µ < φ and unstable
otherwise. The stationary state (15) was found to be stable and attractive for µ > φ
and unstable otherwise.

From examination of a priori bounds for the full initial value problem we estab-
lished that a necessary condition for travelling waves to exist is that µ > φ.

Analysis of the permanent form travelling wave equations showed that, under the
necessary condition, travelling waves with monotone profile are generated for solutions
with φ = 1. Solutions for larger values of µ and φ, however, can exhibit an oscillatory
approach to the stationary state, ultimately controlled by the kinetics of the system.
The nature of these oscillations has been shown to be a succession of rapid reactions,
followed by gradual recovery of the concentration a until the next reaction is triggered.
The concentration b exhibits short-lived but significant increases, corresponding to the
local minima in concentration a. We believe that this transient ‘pseudo’ pulse wave
behaviour in B and the ramp-like oscillatory approach to the stationary state of A, is
the only complex behaviour which can be found in the quadratic autocatalysis system
we have studied under the condition of equality of diffusivities.
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